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Abstract 

A new approach for the calculation of diffraction profdes 
in strained crystals is developed, based on the visual 
concepts of the dispersion surface and Poynting vectors. 
By this approach, analytical expressions have been 
obtained for diffraction profiles for the case of a 
constant strain gradient without, as well as with, 
ultrasonic excitation. Calculations of acoustically 
induced modifications in diffraction spectra explain in 
detail the anomalous dependence of integrated intensity 
on ultrasound amplitude, a dependence that was recently 
found in the Laue scattering geometry. 

1. Introduction 

The sensitivity of X-ray diffraction to static strain fields 
in single crystals is traditionally used to study lattice 
distortions related to crystal defects. Recently, attention 
has been given to X-ray diffraction under dynamic 
deformations created by high-frequency ultrasound (US) 
(Kohler, Mohling & Peibst, 1974; Entin, 1977, 1979; 
Entin & Assur, 1981; Chapman, Colella & Bray, 1983) 
as a result of the new possibilities of measuring weak US 
fields (Cerva & Graft, 1984; Andreev, Ponomarev & 
Smolin, 1988; Zolotoyabko, Panov & Schvarkov, 1993; 
Zolotoyabko, Jacobsohn, Shechtman, Kantor & Salzman, 
1993) and of acoustically controlling X-ray beams in 
space and time (Kikuta, Takahashi & Nakatani, 1984; 
Kocharyan, Sukiasyan, Megrabyan & Sarkisyan, 1989; 
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Roshchupkin, Brunel, Bergevin & Erko, 1992). More- 
over, it turns out that diffraction processes in the 
presence of combined static and dynamic deformation 
fields are of great interest, because of the high sensitivity 
of US-induced diffraction effects to small intrinsic strains 
in the samples. Few works (Entin, Khrupa & Datsenko, 
1990; Khrupa, Entin & Datsenko, 1991; Zolotoyabko, 
Polikarpov, Panov & Schvarkov, 1992; Raranskii, 
Fodchuk, Novikov & Korovyanko, 1993) have been 
devoted to the development of new methods for the 
characterization of the structural quality of semiconduc- 
tor crystals using the high sensitivity mentioned. The 
application of these methods is limited, however, by 
insufficient knowledge about diffraction phenomena in 
complex static and dynamic deformation fields in real 
crystals with defects and subsequent difficulties related to 
the interpretation of experimental data. A comprehensive 
analysis can be performed for crystals homogeneously 
bent by a constant strain gradient (Iolin, 1987; Iolin, 
Raitman, Kuvaldin & Zolotoyabko, 1988; Zolotoyabko 
& Panov, 1992; Chukhovskii, Nosik & Iolin, 1993). 
Even in this model case interesting effects such as a new 
type of Pendellfsung fringe (Zolotoyabko & Panov, 
1992) and the anomalous behaviour of the integrated 
diffraction intensity S (Iolin, Raitman, Kuvaldin & 
Zolotoyabko, 1988; Zolotoyabko & Panov, 1992) were 
observed under US excitation. These effects shed some 
light on the mechanisms of X-ray-acoustic interaction in 
strained crystals. For example, the anomalous behaviour 
of S consists of a substantial decrease (by up to 50%) of S 
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164 X-RAY DIFFRACTION PROFILES IN STRAINED CRYSTALS 

under small US amplitudes w (Hw < 1, where H is the 
magnitude of the reciprocal-lattice vector) (see Fig. 1). 
The opposite (normal) behaviour of S occurs in an 
undistorted crystal where an S(w) growth is observed (see 
Fig. 1), owing to the formation of satellites (caused by 
X-ray scattering on an acoustic superlattice). Actually, in 
a distorted crystal, an angular interval AO _~ e in the 
diffraction profde, determined from the intrinsic strain e, 
can be considered as already 'excited' by the strain 
gradient. Thus, in the angular range e, the formation of 
satellites is suppressed, preventing an increase in S. 
Moreover, as shown by Iolin (1987) and Iolin, Raitman, 
Kuvaldin & Zolotoyabko (1988), the US-stimulated 
interbranch scattering processes lead to a decrease in 
diffraction intensity, as if 'restoring' the lattice to its 
perfect state. This pronounced difference in the S(w) 
dependence in perfect and strained crystals (see Fig. 1) is 
of great importance because it can be used for small 
strain determination. As an outcome of this behaviour of 
integrated diffraction intensity, the following dynamics 
of diffraction profiles are proposed (Zolotoyabko, 
Sander, Komem & Kantor, 1994). When the US- 
induced dynamic strain 8 = 2lklw (where k is the US 
wave vector) exceeds the static strain e, a broadening of 
the diffraction profde is expected, as a result of satellite 
formation, that provides an increase in S(w). In order to 
explain the experimentally obtained decrease in S, it is 
assumed that, in the opposite limit, 8 < e, interbranch 
scattering processes can lead to a narrowing of the 
diffraction profile. In fact, the narrowing effect at small 
US amplitudes was observed in the Bragg scattering 
geometry (Zolotoyabko, Sander, Komem & Kantor, 
1994) and was found to be a promising tool for a high- 
sensitivity strain-measurement method in semiconductor 
structures (Zolotoyabko, Sander, Komem & Kantor, 
1993). Because of this practical significance, it is neces- 
sary to develop a detailed model for the transformation of 
diffraction profiles under US influence in order to 
achieve a deeper understanding of the phenomena 
discussed and to get a quantitative basis for a new 
strain-analysis method. 

Here the corresponding theory is developed for the 
simpler Laue case, where the difficulties related to the 

w 

Fig. 1. Schematic plot of integrated diffraction intensity, S, as a function 
of ultrasound amplitude w: (a) in a perfect crystal; (b) in a strained 
crystal. 

existence of imaginary wave vectors (Bonse, 1964) are 
not present. 

2. X-ray diffraction profiles without ultrasound 

X-ray diffraction in elastically strained crystals in the 
Laue geometry without US has been considered many 
times, starting from the classical works of Penning & 
Polder (1961), Penning (1966) and Kato (1963, 1964), 
based on the concept of geometrical optics. These 
theories were visual and provided a clear description of 
diffraction phenomena, following the movement of tie 
points in momentum space along the dispersion surface. 
A detailed review of this approach can be found in an 
article by Hart (1980). Further progress was achieved 
with the solution of the Takagi equations in real space 
(Takagi, 1962, 1969), which provided a universal 
approach to dealing with slowly varing deformation 
fields. Nevertheless, the analytical solution of Takagi 
equations even in the case of homogeneous bending is 
very complicated (Chukhovskii & Petrashen, 1977). The 
introduction of US deformation increases the mathema- 
tical complexity, and reasonable expressions for the 
integrated diffraction intensity (Chukhovskii, Nosik & 
Iolin, 1993) could be obtained only in some asymptotic 
regimes, without any visualization of the variations in 
diffraction profdes. A completely different approach to 
the description of diffraction phenomena in strained 
crystals (including crystals under US excitation) is 
developed herein, based on the visual concepts of the 
dispersion surface and Poynting vectors. 

Consider a standard dispersion surface (symmetrical 
Laue case) in the two-beam approximation (see Fig. 2) 
for a perfect nonabsorbing crystal. The shape of the 
dispersion surface is described by an equation joining the 
variations of the X-ray wave vector inside the crystal 
along (Skx) and perpendicular to (,~kz) the entrance crystal 
surface (Pinsker, 1978): 

(Skz) 2 = (Skx) 2 tan 2 6)B + (AKo/2) 2 (1) 

where tgB is the Bragg angle and AKo = 2~r/z is the 
characteristic gap inversely proportional to the extinction 
length r. By the introduction of dimensionless param- 
eters, 

q = 28kz/AKo and p = 28kx tan OMAKo, (2) 

a simple relation between q and p, 

q = 4-(1 + p2)1/2, (3) 

is obtained for the upper ( + ) and lower ( - )  branches of 
the hyperbolic dispersion surface. At any given angle of 
incidence 69, which is defined by parameter p as 

0 -  OB = AO = AKop/H, (4) 

two wave fields are excited (corresponding to the tie 
points i - 1,2; see Fig. 2) with amplitudes of transmitted 
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(Xi) and diffracted (Yi) components (Pinsker, 1978) 

IXll = a [ ( 1  + p 2 ) U 2 - p ] / 2 ( 1  + p2)1/2, 

IX21 = a [ ( 1  + p2)1/2 +p]/2(1 + p2)~/2 

and 

(5) 

IYll = IY21 = A/2(1 + p2)1/2, 

where A is the amplitude of the incident wave on the 
entrance crystal surface. It should be noted that, for 
further calculations of the averaged (over interference 
fringes) diffraction prof'des, the phases of Xi and Yi are 
insignificant. For a perfect crystal, the averaged diffrac- 
tion intensity lo(p) at a given p value (diffraction prof'lle) 
is simply calculated by means of (5) 

lo(p) = IYI[ 2 + IY212= A2/2(1 + p2). (6) 

From (5), it is immediately checked that the sum 

IXll = + IX=l 2 + IYll 2 + IYz[ 2 = A  2 (7) 

is a constant independent of p, in accordance with the 
energy-conservation law. The values IXil 2 and IYil = are 
the components of the corresponding Poynting vectors 

P i -  (c/87r)(IXi12So + Iyil2SH) (8) 

(c is the velocity of light, so and s/4 are the unit vectors in 
the directions of the transmitted and diffracted X-rays, 
respectively), describing the density of the energy flux in 
each wave field (i = 1, 2) (Pinsker, 1978). 

Such energy considerations were used to calculate the 
diffraction intensity by a new method, which allows 
generalization for distorted crystals without, as well as 
with, US exitation. The diffraction process is divided into 
two parts: excitation of a given wave field (initial state p) 
on the entrance crystal surface, with an intensity 

El(p) - IXi(P)l 2 + IYi(P)l z, i = 1, 2, (9) 

and its subsequent transformation to the diffraction 
component measured at the exit crystal surface (fmal 
state p'), which is described by the factor 

~j(p') = IY~(p')12/[IXj(p')l 2 + IYj(p')12], j =  1,2. 

(10) 

Both wave fields contribute to the diffraction profile 
l (p) .  Moreover, owing to interbranch scattering pro- 
cesses, the initial and final states can be found, in 
principle, on different branches of the dispersion surface. 
ThUS, 

l (p )  = 0/ijEi(P)~j(p') -- 0/ijLij, (11) 

n 

A 
. . . . .  i . . . . . . . . . .  . . . . . . . . . .  

H 
< . 

(a) 

-Ray 

/ H 

(b) 
Fig. 2. (a) X-ray dispersion surface with stationary tie points 1 and 2 for 

a perfect crystal in the symmetrical Laue scattering geometry [(b)]. n 
is the normal to the entrance crystal surface. 

where the probabilities 0//j depend on the specific 
scattering mechanism. 

In a perfect crystal, the initial and final states 
correspond to the same tie point on the dispersion 
surface, i.e. p = p'. The tie points are stationary because 
the diffraction conditions are identical at every point 
along the X-ray trajectory inside the crystal. In addition, 
the diffraction process takes place without branch mixing 
(0/11--" 0/22 "--1; 0112--" 0/21 ~--0) and so the diffraction 
intensity is given by 

lo(p) = EI(p)~I(p)  + Ez(p)~z(p).  (12) 

Substitution of (9) and (10) into (12) under the condition 
p - - p '  gives, again, (6). Nontrivial results are obtained 
for an elastically bent crystal. In this case, tie points will 
move along the branches of the dispersion surface (see 
Fig. 3) and this movement reflects a modification in 
diffraction conditions while X-rays penetrate the crystal. 
The direction and the range of this movement is 
determined by the sign and magnitude of the strain 
gradient b, as well as by the crystal thickness T (Penning, 
1966). In fact, for a cylindrical bending, I bl = R -1 
(where R is the radius of curvature). Therefore, the 
relation between the deviation angle of atomic planes 
(see Fig. 3) and the thickness T is 

zaOa = T /R  = IblT. (13) 

The deviation angle (13) corresponds to a difference in 
momentum space between the initial, p, and final, p', 
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states of X-ray quanta: 

p ' = p  + N ,  

with a shift value 

(14) 

N = IblTH/zaKo (15) 

obtained using (4) and (13). The presence of a strain 
gradient gives rise to interbranch scattering processes 
(Chukhovskii, 1980), which are described in our scheme 
by contributions Lij with i ~ j. Now, by means of (5), (9), 
(10) and (14), all the terms Lij =Ei(P)~j(p') that 
contribute to the diffraction intensity can be calculated: 

Lll = (A2/4){1 - [p/(1 + p2)1/2]} 

× (1 + {(p + N)/[1 + (p + N)2]1/2i) 

L22 = (A2/4){1 + [p/(1 + p2)1/2]} 

x ( 1 -  {(p + N)/[1 + (p + N)2]1/2}) 

L12 = (A2/4){1 - [p/(1 + p2)1/2]} 

× (1 - { ( p  + N)/[1 + (p + N)2]1/2}) 

(16) 

Lzl = (A2/4){1 + [p/(1 + p2)1/2]} 

× (1 + {(p + N)/[1 + (p + N)2]1/2i). 

Again, Lal + L22 + L12 + L21 = A 2. 

! I 
! , 
! ! 

1',. N ., 
I 'b "1 

p' 'p' 

(a) 

X-Ray 

R 

Y 
(b) 

Fig. 3. (a) X-ray dispersion surface with movable tie points 1 and 2 for a 
cylindrically bent crystal [(b)]. 

In the case of a small strain gradient satisfying the 
condition (Authier & Balibar, 1970) 

[blr/27r < AKo/H or B < 1, (17) 

where B is a dimensionless strain gradient defined as 

n = IbIH/AK 2, (18) 

interbranch scattering processes without US are insigni- 
ficant (Authier & Balibar, 1970; Balibar, Chukhovskii & 
Malgrange, 1983) [i.e., again, in (11), coefficients 
0/11 = 0/22 - -  1, 0/12 = 0/21 = 0] and the diffraction pro- 
file Id(p) of a bent crystal is described analytically by a 
simple expression: 

Id(p) = t l l  -q- L22 

= (A2/2)[1 - (p(p + N) 

x {(1 + p2)[1 + (p + u)Z]}-l/z)]. (19) 

The diffraction profile (19) is symmetric relative to the 
point Po = - N / 2  where the maximum in the diffraction 
spectrum is obtained. The maximum value of the 
diffraction intensity,/max, is given by 

/max = ld(Po) = (A2/2)(1 + {(N2/4)/[1 + (N2/4)]}) 

(20) 

and tends to a 2 = 21o(0) [compare (6) and (20)] with an 
increase in N. At the points p = 0 and p = - N ,  the 
intensity Id = (A2/2) = Io(0). Thus, the effective width 
of the profile approximately equals N. The shapes of 
diffraction prof'des Id(p) for several deformation par- 
ameters N are shown in Fig. 4. The behaviour of the 
integrated intensity S(N) = f ld (p)  dp is also important, 
since it can be compared with results obtained via 
the solution of the Takagi equations (Chukhovskii 
& Petrashen, 1977). The normalized dependence 
S(N)/S(O) is shown in Fig. 5. In order to accord with 

1.8' 

1.6 
N=I0_~ / N=2 

1.4' -,,..4 
1.2' ~ N-1 

~ 0.6- 

0 . 4 -  / ~  

0.2- 

° 2 o - i s - i s - i 4 - i 2 - i o  "8-~  "4 '2 o i i ~ ~ 1o 
P 

Fig. 4. Diffraction profiles Ie(p) without US for several values of the 
deformation parameter N. The peak intensity of a perfect crystal is 
taken as 1. 
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well known results (Chukhovskii & Petrashen, 1977; 
Chukhovskii, 1980), the linear part of this plot should be 
described by the function 

S ( N ) / S ( O )  = 4 B T / r  = 2N/~r, (21) 

where the second equality is obtained by means of (15) 
and (18). In Fig. 6, the reduced data 17 = N-1S(N)/S(O) 
are plotted against N. This figure clearly demonstrates 
that, in fact, parameter 17 rapidly tends to a constant value 
of 2/zr with an increase of N. 

It can be concluded that, in the case of a constant strain 
gradient, a non-Lorentzian (rectangle-like, see Fig. 4) 
diffraction profde is formed that is N times broader than, 
and has almost twice the peak intensity of, a diffraction 
profile (Lorentzian) of a perfect crystal. Thus, the 
experimentally observed anomalous decrease in integra- 
ted intensity under a weak US excitation can be caused, 
in principle, by two mechanisms: narrowing of the 
diffraction profile or reduction of peak intensity. In §3, 

14 '  

12  

10 '  

A 
o 

4 '  

2 '  

o ~ ~ ; ~ /o A A A A 20 
N 

Fig. 5. The plot of normalized integrated diffraction intensity, 
S(N)/S(O), as a function of deformation parameter N. 

1.3' 

1 . 2 '  

1 . 1 '  

0 . 9 -  

0 , 8 -  

0 , 7 -  

0 . 6 -  

0 "5  0 

m • • • • 

N 

Fig. 6. The plot of reduced integrated intensity, S(N)/[NS(O)], as a 
function of deformation parameter N, reaching asymptotically a limit 
of 2#r. 

the effect of US on diffraction profiles is calculated 
directly. 

3. X-ray diffraction profiles under ultrasound 
excitation 

The approach developed can be extended to strained 
crystals undergoing US excitation. US stimulates X-ray 
inelastic scattering with emission and absorption of US 
phonons. Since the phonon energy is not comparable 
with the energy of X-ray quanta, only a wave-vector 
transfer should be considered. If the US wave vector k is 
directed along the reflecting planes (k _L H) and 
I k l - - k  > AKo (high-frequency US), then in momen- 
tum space inelastic scattering processes are represented 
as interbranch jumps of tie points in the vicinity of 
definite positions P+n on the dispersion surface (inter- 
action points). These points are located where the gap 
value AK = AKo(1 + p2)1/2 equals an integer number 
n = 1, 2, 3 . . . .  of US wave vector k (see Fig. 7): 

P+n = " t - [ ( n k / A g o )  2 -- 1] 1/2- (22) 

Interbranch transitions make the movement of tie points 
more complicated. As a result, cross terms Lij in (11) 
should be taken into account. In principle, the 'fate' of 
every tie point must be followed because the contribution 
of a tie point to diffraction intensity will be different 
depending on its starting position p, the magnitude of the 
deformation parameter N and the positions p,, of essential 
multiphonon interaction points. In order to describe 
quantitatively the movement of tie points along the 
dispersion surface, two probabilities are introduced in 
each interaction point: Rn to remain on the same branch 
and Mn to jump to the other one (Rn + Mn = 1) because 
of the n-phonon process (Iolin, 1987; Iolin, Raitman, 
Kuvaldin & Zolotoyabko, 1988). 

Rn "- exp(-srFn2/2B) 

Fn "- Jn(2Hw)[g-1/4~n,2m+ 1 + gl/4<~n,2m] (23) 

g = 1 - [ J o ( 2 H w ) z a K o / n k ) l  2, 

) 

3k \ 21~ ~ ) k 2k 3k 

~ n - -  n - 3  " "  

H 

Fig. 7. Interaction points on the dispersion surface in a crystal 
undergoing high-frequency US excitation. 
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where Jn(x) is a Bessel function of the nth order and 8ij is 
the Kronecker delta. The number of US phonons that 
must be taken into account depends on the US amplitude 
w and can be evaluated using the asymptotes of these 
Bessel functions: the nth-order Bessel function, Jn(x), 
becomes significant when its argument value x _~ n. The 
diffraction profile will be described by (11), with Lij 
functions (16) and the coefficients otij will be combina- 
tions of probabilities R, and Mn. 

The principle of calculation is illustrated by an 
example for Hw < 1, when only the one-phonon 
process is significant. With the removal of any ambi- 
guity, p4-1 -- 4- 0.4, N = 2 and a definite sign of strain 
gradient that provides a movement of tie points from left 
to right (see Fig. 8) are chosen. Under such conditions, 
the dispersion surface can be divided into several 
intervals of p values, where the US-induced modifica- 
tions of the diffraction profile will be different. 

(1) -(x~ < p < - 2 . 4 .  According to (14), the differ- 
ence between starting and final p values is Ap = N = 2. 
It means that tie points in this range ( - o o  < p < -2 .4 )  
will not be influenced by US, since they could not reach 
the left interaction point P-1 = - 0 . 4  under the strain 
gradient (see Fig. 8a). The diffraction profile in this p 

(a) 

(b) 

(c) 
Fig. 8. Possible trajectories of tie points in reciprocal space under 

one-phonon US excitation. Details of (a), (b) and (c) are given in the 
text. 

range is still described by the same expression as without 
US: 

Id (p) = L 11 + L22. (24) 

(2) --2.4 _< p <- -1 .6 .  Tie points in this range will 
move under the strain gradient, reaching the left inter- 
action point P-1 = - 0 . 4  (see Fig. 8b). Thus, tie points 
will remain on the same branch with a probability R1 and 
will jump to the other branch with probability M1 
(R1 + MI = 1). Correspondingly, this part of the 
diffraction profile is expressed as 

Id(p)-"  RI(Lll + L22) + Ml(L12 + L21). (25) 

(3) - 1 . 6  < p < -0 .4 .  The adiabatic movement of tie 
points is interrupted in both interaction points 
P+I = 4-0.4 (see Fig. 8c). Therefore, 

Ia(p) = (R~ + M?)(Lll + L22 ) + 2R1MI(L12 + L21 ). 

(26) 

(4) - 0 . 4  < p < 0.4. The situation is identical to that 
of case (2). 

(5) 0.4 < p < oo. The situation is identical to that of 
case (1). 

With (16) and (24)-(26), diffraction profiles can be 
simulated at different US amplitudes, i.e. at different R1 
values; several examples are shown in Fig. 9. The results 
obtained show a cancellation of the strain-induced excess 
of diffraction intensity in the vicinity of the profile 
maximum, rather than a narrowing of the diffraction 
profile. 

In order to obtain more detailed data in the wider w 
range, simulations were performed of diffraction profiles 
in the three-phonon approximation (P+I = 4 - 0 . 4 ,  
P+2 = 4-1.9, P+3 = 3.0) up to 2Hw -- 2. All possible 
trajectories of tie points were taken into account. The 
integrated diffraction intensities for N = 1, 2, 3 

( c ) \  

.,--I 

0 . 8 "  

H 0.6 

0 . 4  

0 . 2  

0 
-i0 -8 -6 -4 

~ j ( a )  

r (b) 

(d) 

Fig. 9. Diffraction profiles for N = 2, calculated in the one-phonon 
approximation at different US amplitudes, corresponding to several 
RI values: (a) 1.0; (b) 0.9; (c) 0.7; (d) 0.5. The peak intensity for a 
perfect crystal was taken as 1. 
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(B = 0.1) depending on US amplitude are shown in 
Fig. 10. The anomalous decrease in integrated intensity 
at small H w  becomes more pronounced with an increase 
in the deformation parameter N, which agrees well with 
experimental data (Iolin, Raitman, Kuvaldin & Zolo- 
toyabko, 1988; Zolotoyabko & Panov, 1992). This 
decrease is due to a reduction in peak intensity without 
profile narrowing, as is clearly seen again in Fig. 11, 
where several profiles at N = 3 and x = 2Hw < 1 are 
shown. With a further increase in the US amplitude, a 
growth in integrated intensity is observed (Fig. 10), 
which is a result of satellite formation. The satellite-like 
structure of the diffraction profiles is clearly revealed at 
x = 2Hw > 1 (see Fig. 12). It should be noted that, 
although the diffraction spectra of strained crystals are 
undoubtedly coupled with the satellite positions in a 
perfect crystal (P+n points), the profiles in Fig. 12 are 
more complicated. The observed features are mostly 
determined by the number of regions on the dispersion 

2.8- 

2.6- 

2.4- 

2.2" 

2" 

1.8 

0 0.2 0.4 0.6 0.8 i 1.2 1.4 1.6 1.8 

x=2Hw. 

Fig. 10. Integrated diffraction intensities for N ---- 1, 2 and 3 depending 
on US amplitude. Three-phonon approximation. 

surface that are nonequivalent in the sense of the 
topology of tie-point trajectories. 

4. Concluding remarks 

The approach developed allows the description of the 
modifications in diffraction profiles (Laue case) evolving 
in elastically bent crystals without, as well as with, US 
excitation. Diffraction profiles la(p)  without US (19) 
tend to have a rectangle-like shape with a maximum 
i n t e n s i t y  /max ~ '  2Io(0) and a width Fa ~_N as the 
deformation parameter N increases (see Fig. 4). Thus, the 
diffraction profile Ia is much broader than for an ideal 
crystal (Fa > Fo = 2) and has nearly twice the peak 
intensity. A comparison between the integrated inten- 
sity for such a prof'de, Sa "" ImaxFa ~-- 2Io(O)N, and the 
area under a Lorentzian (6) for an ideal crys- 
tal, So = :rrlo(O)Fo/2 = rdo(O), leads to a ratio 
Sa/So = 2N/n', which can be considered as a large-N 
asymptote. It coincides with results obtained using 
Takagi equations in the case of small strain gradients 
(B < 1), when the interbranch scattering processes can 
be neglected. 

High-frequency US creates a new channel of interac- 
tion between the branches of the dispersion surface. 
Inelastic X-ray scattering on an acoustic superlattice 
provides an independent jumping mechanism for tie 
points, with the jumping probability increasing rapidly 
with the growth of US amplitude. Correspondingly, a 
redistribution of X-ray quanta between transmitted and 
diffracted beams occurs. As a result, the anomalous 
dependence of the integrated intensity is observed, with a 
dip formation at small US amplitudes. In the beginning, 
the dip value ~ increases with N (see Fig. 10). 
Experimental data show, however, that ~ never exceeds 
50% (Iolin, Raitman, Kulvaldin & Zolotoyabko, 1988; 
Zolotoyabko & Panov, 1992). Calculations have demon- 
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Fig. 11. Diffraction profiles in a strained crystal undergoing US 
excitation. Three-phonon approximation. N = 3, x = 2 H w  < 1. The  
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their shape. 
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their shape. 
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strated that the dip formation is not related to a narrowing 
of the diffraction profile but rather is caused by a 
decrease in peak intensity (see Fig. 9). The reduction of 
the strain-induced excess of peak intensity takes place 
from/max [see (20)] to the level of a perfect crystal, 
Imin = Io(0) = A 2 / 2  [see (6)]. With the quasirectangular 
shape of the diffraction profiles taken into account, the 
dip value ~ in integrated intensity can be estimated via 
the variation in peak intensities (at least in the limit of 
large N): 

= ( / m a x  - lmi~)/Imax = (N/2)2 / [1  + 2(N/2)2]. (27) 

From (27) follows a growth in the dip magnitude with an 
increase in N up to ~ = 0 . 5 ,  in agreement with 
experimental data. Note that, for N < 5, (27) will 
provide somewhat overestimated ~ values owing to 
deviation of diffraction profiles from a rectangle-like 
shape. 

It was shown (Iolin, Raitman, Kuvaldin & Zolo- 
toyabko, 1988) that the reduction in the integrated 
intensity due to interbranch jumping is maximum for 
H w  "" B 1/2. Thus, in our case of B = 0.1, 2 H w  ~_ 0.6 
coincides with the dip position on the curves in Fig. 10. 
When the US amplitude is raised, the multiphonon scat- 
tering processes become significant, and a broadening in 
diffraction profiles occurs because of satellite formation 
(see Fig. 12) that leads to an increase in integrated 
intensity (see Fig. 10). The structure of diffraction 
profiles depends on different parameters (N, B,  k / A K o ,  
w) and reveals interesting features. For example, an 
extremely narrow rectangle-like component is observed 
in Fig. 12 (at 2 H w =  1.4), having a full width 
F "" 0.31"o. Such components may be used, in princi- 
ple, in monochromatization systems for synchrotron 
radiation. 

Note that detailed measurements of diffraction profiles 
under ultrasonic excitation have not been performed even 
in perfect crystals, not to mention strained ones. Few 
experimental observations of ultrasonically induced 
diffraction satellites [see, for example, Entin & Assur 
(1981) and Chapman, Colella & Bray (1983) have been 
made in the Bragg scattering geometry. These experi- 
ments demonstrated only in principle the appearance of 
satellites, without focusing on the strain state of the 
sample. The main efforts were aimed at easier measure- 
ments of integrated diffraction intensity. Thus, the 
amazing graphs in Fig. 12 may be considered a 
challenge to X-ray groups having double-crystal diffrac- 
tometers with angular accuracy of the order of 0.1". 

The last remark concerns the important narrowing 
effect of rocking curves at small US amplitudes (with 
approximately the same peak intensity) that was 
experimentally obtained in the Bragg case (Zolo- 
toyabko, Sander, Komem & Kantor, 1993, 1994). It 
can be concluded that, apparently, it is a specific effect 
for a given scattering geometry. In fact, in the Bragg 

case, the reflection coefficient in the range of total 
reflection equals 1 for a perfect crystal. Thus, the growth 
of integrated intensity under strain gradient (see, for 
example, Uschmann, Forster, Gabel, Holzer & Ensslen, 
1993) must be related to a broadening in the diffraction 
profile alone. Correspondingly, the reverse process - the 
US-induced redistribution of X-ray quanta (restoration of 
diffraction profile to an ideal shape) at small US 
amplitudes - should first of all lead to a narrowing of 
the diffraction spectrum as a result of the limited degree 
of freedom in the peak intensity variation. This problem 
is now under investigation and the results will be 
published in a separate paper. 
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Abstract 

Elastic scattering factors (or atomic form factors)f (s) for 
Li to Ar have been derived in the first Born 
approximation from ab initio MR-SDCI (multireference 
singly and doubly excited configuration interaction) 
calculations which recover between 90 and 99% of the 
estimated total correlation energy. The correlation effects 
on f(s) are contrasted with the relativistic effects known 
from the literature. Atomic form factors are presented 
that take into account correlation and relativistic 
contributions in an additive manner. 

Introduction 

Elastic scattering factors (or atomic form factors)f(s) 
listed in International Tables for Crystallography 
(Maslen, Fox & O'Keefe, 1992) are widely used in 
crystallographic structure calculations. Except for hydro- 
gen, they were computed from relativistic Dirac-Fock 
wavefunctions which completely neglect electron corre- 
lation. However, at least for light atoms, correlation 
effects are expected to be more significant than 
relativistic corrections. For two-electron systems and, 
restricted to rather few s values, for Li and Be, accurate 
atomic form factors are available that account for more 
than 99% of the estimated total correlation energy 
(Thakkar & Smith, 1992; Schmider, Esquivel, Sagar & 
Smith, 1993; Esquivel & Bunge, 1987). For B to Ne, 
atomic form factors including correlation contributions 
were published but they either do not account for a 
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sufficient amount of electron correlation (Tanaka & 
Sasaki, 1971; Peixoto, Bunge & Bonham, 1969) or they 
rely on non-variational configuration interaction schemes 
(Naon & Cornille, 1973). For Na to Ar, no correlation 
calculations of form factors have been published to date. 
In the present work, atomic form factors are derived 
based on ab initio MR-SDCI (multireference singly and 
doubly excited configuration interaction) calculations 
which recover between 90 and 99% of the estimated total 
correlation energy. The resulting correlation contribu- 
tions to f(s) are compared with corresponding relativistic 
contributions known from the literature. 

Computational details 

The atomic form factor in the framework of the first Born 
approximation (Waller & Hartree, 1929) is given by 

f (s )  = fp(r)exp(isr)dr, (1) 

where r denotes the position vector of an electron, p(r) 
the one-electron density and s the scattering vector. The 
magnitude of s is the scattering variable s which depends 
on the wavelength ~. of the radiation and the scattering 
angle 20 according to s = (4zr/Z) sin 0. If the one- 
electron density is expanded in terms of GTOs 
(Gaussian-type orbitals), Xu, the spherically averaged 
form factor is obtained as 

f (s) = (1/47r) f f  (s)dff-2 

= (1/4zr)Y~fi~,~ffx,(r)xv(r)exp(isr)drdl2, (2) 
/zv 
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